
428 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 43, NO. 2, FEBRUARY 1995

A Numerical Solution to Full-Vector

Electromagnetic Scattering by

Three-Dimensional Nonlinear

Bounded Dielectrics
Salvatore Caorsi, Andrea Massa, and Matteo Pastorino, Member, IEEE

Abstract-This paper deals with electromagnetic scattering by
nonlinear dielectric objects. In particular, a numerical approach
is developed that is aimed at determining the distributions of the
electromagnetic field vector inside a three-dimensional nonlinear,
inhomogeneous, isotropic scatterer illuminated by a time-periodic

incident electric field vector. An integral-equation formulation for

the full-vector scattering problem is considered, and the nonlinear
effect is taken into account by introducing equivalent sources and

a Fourier-series representation. A system of integral equations
(for each harmonic vector components and for the static term) is

obtained that includes the internal electric field distribution as the
unknown. After discretization, the solution is reduced to solving
an algebraic system of nonlinear equations. Some preliminary
numerical results are reported concerning scatterers that exhibit
a specific (quadratic) dependence of the dielectric permittivity on
the total electric field. The harmonic components of the scattered

electric field outside the objects are also computed.

I. INTRODUCTION

T

HE PROPAGATION of electromagnetic waves through

solids is essentially a quantum-mechanical phenomenon,

as it involves interactions between energy quanta and mat-

ter. However, the description of such propagation in terms

of classical field theory is always useful in the context of

macroscopic interactions. Unfortunately, in the presence of

nonlinear media, it is in general very difficult to predict

nonlinear electromagnetic phenomena by general solutions of

the Maxwell equations. For this reason, in the past particular

solutions were proposed in order to explain such phenomena.

In this context, the study of electromagnetic wave propagation

[1] was aimed, for example, at defining the conditions under

which shock waves may form and propagate [2] and at

analyzing the behaviors of solitaty waves and soliton waves,

which are solit~ waves that develop and interact without

losing their identity [3]. Many types of solitons in various
physical media were described (e.g., in water as well as optical

waveguide) [4]–[7].

Nonlinear wave propagation and scattering were the subjects

of fundamental books in the fields of nonlinear optics [8]

[9] and nonlinear electromagnetic [10]. These books gave

an idea of the broad spectrum of possible applications (see

also [1 l]). To study the electromagnetic field in the presence
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of nonlinear media. approximate solutions were very often

adopted, using both numerical and analytical techniques. For

example, in [12] the perturbation technique was applied to

electromagnetic waves in waveguides and cavities filled with

nonlinear media. The authors assumed isotropic media where

the dielectric permittivity and the magnetic permeability were

dependent on the amplitudes of the electric and magnetic

fields, respectively. Others used a functional approach based

on the Volterra series [13] (which is the functional analogous to

the Taylor series), for example, to characterize whistler-mode

propagation in plasma [14] and to study nonlinearly loaded

antennas [15].

However, in most cases, propagation along infinite or semi-

infinite nonlinear media was considered, while more work

needs to be done on the interactions between electromagnetic

waves and nonlinear dielectrics of limited dimensions (i.e.,

electromagnetic scattering problems).

This topic was addressed by D. Censor from a systematic

point of view [16], [17]. He considered weak nonlinearities

described by Volterra series, and analyzed the scattering from

cylinders and spheres. In [18], [19], the authors presented a

solution to the electromagnetic scattering of obliquely incident

plane waves from homogeneous, nonlinear, anisotropic cylin-

ders. They used plane waves of unit amplitude as incident

fields and circular cylinders whose radii were fractions of the

wavelength related to the fundamental frequency.

This paper presents a numerical approach to the compu-

tation of the electromagnetic field vector scattered by three-

dimensional, bounded, inhornogeneous, isotropic, dielectric

objects with nonlinear characteristics (direct scattering prob-

lem). The dielectric perrnittivity depends on the electric field

inside an object and hence on the interaction mechanism

between the incident electromagnetic field and the nonlinear

material.

In particular, the purpose is to explore a numerical technique

to determine the electromagnetic field distributions inside and

outside a nonlinear body of arbitrary shape. To this end, we

develop an integral-equation formalism in which nonlinear

effects are taken into account and analytically represented in

terms of equivalent sources. The moment method [20] is used

to discretize the resulting set of coupled integral equations.

The problem solution is finally reduced to the solution of a

system of nonlinear algebraic equations.
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The mathematical formulation of the approach is presented

in Section U, and the results of some numerical simulations

are reported in Section III.

II. MATHEMATICAL FORMULATION

Let us consider a bounded region D, which is occupied

by a nonlinear bounded dielectric object characterized by

a dielectric permittivity &NL (r, t) (r: position vector; t: time

variable), which depends on the electric field inside the object

through the relationship:

@L(r, t) = E~[&~(r) + L{E(r, t)}] (1)

where E(r, t) is the total electric field vector, &b(r) is the

linear component of the relative dielectric permittivity and

,C{E(r, t) } denotes an operator that is assumed to fulfill the

constraint of not modifying the scalar nature of the dielectric

permittivity (i.e., the isotropic nature of the dielectric object)

and to be a periodic function expansible in Fourier series.

Further, the dielectric object has a magnetic permeability equal

to No (we neglect the possibility that the nonlinearity of the di-

electric permittivity may influence the magnetic permeability).

The region outside D is a homogeneous, isotropic, nondissipa-

tive, boundless space region. The dielectric characteristics of

this region are represented by the dielectric permittivity E. and

the magnetic permeability #o. Moreover, Ei (r, t) and H’(r, t)

stand for the incident electromagnetic field vectors produced

by an electromagnetic source in the absence of scattering

objects, i.e., in the presence of an entirely homogeneous region

characterized by the dielectric constants &o and so.

At each point, the total electromagnetic field vectors, E(r, t)

and H(r, t), satisfy the Maxwell equations:

V x E(r, t) = –~O~{H(r, t)} (2)

V x H(r, t) = ~{s(r, t)E(r, t)} (3)

and Sommerfeld’s radiation conditions.

The presence of the object can be taken into account by

solving a suitable Equivalent problem in which the scattering

object is replaced by an equivalent current density distribution

that extends to a domain that coincides with the region D,

but that is characterized by the same dielectric parameters as

the propagation medium. By definition, this equivalent current

density must be such as to produce, inside the region D,

an electromagnetic field equal to the one resulting from the

scattering by the medium inhomogeneity represented by the

nonlinear object. It follows that the electromagnetic field now

fulfils the following [21]:

V x E(r, t) = –pO~{H(r, t)} (4)

V x H(r, t) = eo~{E(r, t)} + J,q(r, t) (5)

where

J.q(r, t)

= ~IJ~{[@(r)– l]E(r, t)} + &o~{L{E(r, t)} E(r, t)}

= JL(r, t) + JNL(r, t) (6)

If the electromagnetic coupling between the electromagnetic

source and the scattering object is negligible, the total electric

and magnetic field vectors at each point can be expressed as:

E(r, t) = Ei(r, t) + Es(r, t) (7)

H(r, t) = Hi(r, t) + H’(r, t) (8)

where Es (r, t) and Hs (r, t) denote the electric and magnetic

field vectors scattered by the dielectric object, and satisfy the

equations:

V x E’(r, t) = –po~{Hs(r,t)} (9)

V x H’(r, t)= q~{Es(r, t)}+ J.q(r, ~) (lo)

where Jeq(r, t) is still given by {6). As is well known, from

(9) and (10) it is possible to derive the inhomogeneous wave

equation:

V x V x E’(r, t) + ,uOsO~{ES(r, t)} = –,w~{J..(r, ~)}
(11)

Then, under the hypotheses made on the incident electric

field vector and on the nonlinear permittivity, we can expand

E(r, t),Es(r, t) and ,C{E(r, t)} in Fourier series with the

fundamental pulsation W. = 27r~o (~. being the fundamental

frequency of the incident field), as follows

+CO

E(r, t) = ~ E. (r) exp(juat),
LZ. -m

w= = awo (a integer) (12)

+CO

E’(r, t) = ~ E:(r) exp(joat) (13)

a.—w
+m

.L{E(r, t)} = ~ Oa(r) exp(juat) (14)
(l=-m

where 0.(r) denotes the a-th (scalar) term of the Fourier

expansion of Z{E(r, t)} that can be made explicit once the

nonlinear operator has been specified. From (12) and (14), we

obtain the following relation:

+m

,C{E(r, t)}E(r, t) = >: T.(r) exp(jwat) (15)

CL=-m

where

T.(r)

alz—m a~=—cx

(16)

and %, ,~z = 1 if al + az = a, -y:,,., = O otherwise.

It should be noted that, in this relation, each vector T.(r)

generally depends on all the harmonic components of the

electric field. From (6), it follows that the vector T.(r)

is proportional (by a factor 1/jumeo) to the a-th Fourier

components of the nonlinear part of the equivalent current
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density. At this point, it is possible to substitute (9), (13) and

(15) into (11), thus obtaining:

Ll,. -cc

+Cc

= ~ (3q@.J.t)

x {u~~o~o[~b(r) – I]E.(r) + dPoEoT. (r)}
(17)

From (17), one can deduce that each harmonic component

satisfies he inhomogeneous wave equation:

V x V x E:(r) – k~E~(r)

= k~[tb(r) – I] E.(r) + k~Ta(r) (18)

where ka = W.- (i.e., wavenumber for the pulsation Wa).

From this relation, it appears evident that the presence of the

term T.(r) on the right-hand side indicates the dependence of

the generic harmonic term for the electromagnetic scattering

on the mutual coupling among the different vectors related to

the various frequencies. In particular, for Z{E(r, t) } = O, that

is, in the case of linear conditions, all terms T.(r) are zero,

and (18) is equivalent to the well-known equation for direct

scattering in linear problems [20].

Therefore, a formal solution to (18), that is, the expression

for the a-th generic component (a # O) of the scattered electric

field vector, can be written as:

E~(r) = –
/

k$[&~(r’) – l] Ea(r’) . Go(r/r’, ka)dr’
D

—
/

k~Ta (r’) . Go(r/r’, ka)dr’ (19)
D

where Go (r/r’, L.) denotes the dyadic Green function for free

space [22]:

where I is the unit dyadic.

For the O-th harmonic term, for which k. = O (static

component), it is possible to consider the following expression

for the polarization vector:

Po(r) = eo[s~(r) – l] Eo(r) + eoTo(r) (21)

from which the following relation for the O-th component of

the scattered electric field can be derived:

x {~o[zb(r’) – l] Eo(r’) – &oTo(r’)} ndr’

1

–/

r—r’—
47r~Q~ lr - r’13V

x {eo[e~(r’) – l] Eo(r’) – &oTo(r’)}dr’ (22)

where S is the surface including the domain D, and n is the

outward normal unit vector.

Equations (19) and (22) indicate an explicit functional

relationship among the harmonic components of the scattered

electric field vector. If we consider a finite number, A, of

harmonic components, (19) can be rewritten for each value

of a (a # O), thus leading to a system of A + 1 vector

integral-differential equations (for a = O, consider (22)).

This system can be discretized by the moment method [20].

To this end, we expand all components Ea,zl, and T.,.,,

p = O, 1,2 (we assume (zo, ~1, ZZ) = (z, y, z)), into sums

of N basis functions with the coefficients E: ~p and T~zp

(n= l,..., N), and we consider N suitable tes’ting functions

wn, m = 1, ..., N. In this paper, we utilize, for simplicity,

rectangular pulse functions as basis functions and Dirac deltas

as testing functions. Under such assumptions, from (22) we

obtain

;Ty ‘i’{(m - l)J%., +a,}=—
n=l (#

{

‘“ 6Xp,m — ~p,n — 7ij_ Pf2 Zp,m — ‘p,n — ~6pq
x

}

Asnq
/rm - rn - >q/’ - Irm - rn - >ql’

p=() ,., .,2 m=lj.. .,N (23)

where r. = (Xo,n, Zl,n, Zz,n) denotes the position vector

related to the center of the n-th subvolume of D, ASnq rep-

resents the area of the face of the n-th subdomain orthogonal

to the q-axis, d~, is the edge of the same subdomain parallel

to the q direction and, finally, 6Pg stands for the Kronecker

symbol (6Pq = 1 if p = q, ~pg = O otherwise).

Application of the moment method to (19) yields:

+ ~ ~ {A~~P,Zq }T~,zq = -e~ZP
q=o n=l

m=l, . . ..N p=o,. ,.,2 a=l, . . ..A (24)

where em~,ZP is the XP Cartesian component of the a-th har-

monic term of the known incident electric field, E’(r), eval-

uated for r = r~. In (24), Gmn~ ~P,X~ and Gmn~,z, ,Zq are given
by:

where ‘r(r,, ) = jLJaEo [Eb (rn) – 1] and PV indicates the

principal value of the integral.
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Equations (25) and (26) can be explicitly derived as in [23]

for the Iinear case, taking into account the Van Bladel theory

for the principal value [24]. As a result, we obtain (27), shown

at the bottom of the page, and

Am.
a,xv, xq

(28)

mn _ =P,m—Xp,.

4
where ~~~ = akalrm – r.l,(zP — lr~_,nl ,Pn = T3 3AVn

and AVn is the volume of the n-th subdomain.

By using (23) and (24), we obtain a system of (A+ 1)x N x 3

scalar algebraic equations that can be solved by means of

a suitable computation algorithm. This system allows one to

determine an approximate distribution of the scalar harmonic

components of the scattered electric field inside the scatterer.

Starting from such an approximate distribution, the values of

the harmonic components of the total electric field vector at

each point outside the scatterer can be easily obtained by

numerically calculating the integral on the right-hand side of

the equation:

E.(r) = E:(r) + @~wo
J

[~a(r)E.(r) + jw.&OT.(r)]

D

x Go(r/r’, ka)dr’ a=l, . . ..A (29)

III. NUMERICAL EXAMPLES

In this section, we present the results of some numerical sim-

ulations performed mainly in order to explore the possibility

of determining the harmonic components of the electric field

vectors inside nonlinear dielectric scatterers. As an example,

we considered a dielectric scatterer, namely, a parallelepiped,

whose volume was Ao/l 5 x Ao/30 x Ao/15, ~. being the free-

space wavelength related to the fundamental frequency. The

object was assumed to be homogeneous in its linear part of the

dielectric permittivity, lossless and nonmagnetic. Moreover,

we assumed the nonlinear operator L{E(r, t) } in relation (1)

to be given by:

.L{E(r, t)} = a21E(r, t)12 (30)

where a2 is a real coefficient, and IE(r, t ) I stands for the

amplitude of the electric field vector. Under such assumptions,

the nonlinear dielectric permittivity turns out to be dependent

on the electromagnetic power. According to (1), the expression

for equivalent dielectric permittivity is:

&NL(r, t) = &o{&~ +- azlE(r,t)12} (31)

The object was illuminated by an incident electric field repre-

sented by two uniform plane waves of unit amplitude, at the

frequencies j. and 2f.. The twc} waves propagated in the 2

direction, normal to one of the smallest sides of the scatterer,

and the electric field vector was polarized in the j direction

parallel to the smallest edge (to save space, the geometrical

configuration is shown in the upper left portion of Fig. 6(a)).

For this example, we used a frecpency f. = 1 GHz, and the

dimensions of the object were chc,sen such as to be comparable

with the wavelengths of the fundamental and some harmonic

components in order that the scattering phenomena might

be significant. In addition, the object dimensions were fixed

taking into account the need for a numerical discretization

based on the criteria for an accurate usage of block models

[20] (which require the field not to vary too much inside each

cell), at least for the first harmonic vector components.

We considered the generation of six harmonic components

at the frequencies afo, a = O,. . , A, A = 6 (a = O gives the

static field), and we assumed N := 4. We obtained a system of

(A+ 1)x JV x 3 coupled scalar nonlinear algebraic equations,

in which the unknown terms were the coefficients E~xP. This

system was solved by using the iterative Wolfe method [25].

As an example, Fig. 1(a) illustrates the amplitude behavior

of the harmonic components of the copolarized scattered

electric field vector (y-polarized), IE$,v 1,a = 1, ..., A, A =

6, versus various significant values of the nonlinear index

CYZ,in the range 0.0 to 0.1, for the k-th subdomain (with

rk = (Ao/60, O, –Ao/60)) and for a linear part of the relative

dielectric permittivity &b = 2.0 (for this small value of

&b, the nonlinear part of the dielectric permittivity becomes

significant). The obtained values of the amplitude of the

scattered electric field, for az = 0.0, coincide with those

obtained by the authors (as a consistency check) by using the

moment method [20] for direct scattering by linear dielectrics.

Fig. l(b) gives the amplitudes {of the harmonic components

of the copolarized scattered electric field vector (y-polarized),

IE$J,cz = 1,..., A, A = 6, for the h-th subdomain (with

rh = (Ao/60, O, – Ao/60)), versm various values of the linear

part of the relative dielectric permittivity of the scatterer. In

this case, we fixed cw = 0.1. As expected, the amplitudes of

G~: Z,
, P,

‘[
-io.fLo~.T. (r.)Av. =v-nm.)

47r(7mn)~ { [(%m)2 -1- ~%m]kl

+<y<y [3 - (Tmn)z + 3j7mn] } m#n

6
{

2~’’”~~~”)W0 [(1 + jk.pn) exp(–jk.pn) – 11Pq — “

[
-1+* 1} m=l~

(27)
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Fig. 1. Amplitudes of the harmonic components of the scattered elec- tltn

tnc field (coefficients I_E~v I): (a) versus thenonlinear parameter a2, for

&b = 2.0, m = ~,rk = (~o/60,0, –~o/60), A = 6; (3) versus the linear
(b)

part of the dielectric permittivity Eb, for cw = 0.1, m = h, A = 6. Fig. 2. Behavior of the equivalent dielectric permittivity e:(t)
as a function of time (relation (30)): (a) for various values of

az(q = Z.O,m = k,rk = (Ao/60,0, —Ao/60), A = 6); (b) for various
the higher harmonic components decreased as the linear part values of~b (CW = O.l, rn = h,r~ = (Ao/60,0, –Ao/20), A = 6). tO is

of the dielectric permittivity increased, for the nonlinear effect the period of the fundamentalcomponentat the frequencyfo.

was hidden by the linear part of the dielectric permittivity.

Both Fig. l(a) and (b) shows the generation of a rather

significant static component, which the proposed approach is

able to take into account. Once the coefficients E~ZP, a =

0,..., A,p = 0,...,2, m = I,... jN, were obtained, the

following quantity was computed:

which can be viewed as an “equivalent” relative dielectric

permittivity, of course, time-dependent. e~(t) gives the ap-

proximate values of &NL (r, t) in relation (1), for r = rm.

Fig. 2(a) shows (for the specific incident electric field used)

the behavior of e~q over a time interval corresponding to

to (i.e., the period of the fundamental component fo), for a

subdomain with rk = (Jo/60, O, –Jo/60), and for different

values of the index CY.2.Fig. 2(b) gives the plot of S$q (for the
same time interval) versus various values of the linear part of

the dielectric permittivity, for a2 = 0.1. One can observe that,

as &b increases, the nonlinear effect tends to disappear, and
&h tends to assume constant vahes.

eq
On the basis of the approximate internal electric field

distribution, the external field was computed through relation

I

I

e
.0, ~!L----l

o 0.2 0.4 0.6 0.8 1

z/L. [X=o, y=o]

Fig. 3. Scattered electric field (y-component) along the propagation axis
(z = O,y = O), for CKZ= (t.l,&b = 2.0, A = 6,t~ = (n – l)to/4.

(29). The following figures give the field values at points along

the propagation axis. One-thousand points were considered.

Fig. 3 shows the behaviors of the time-dependent copolarized

components of the scattered electric field vector, for z =

O,y = O and O < z < Ao, and for t = t., where

t. = (n – l)to/zLIn this case, we assumed Eb = 2.O

and cw = 0.1. Fig. 4(a) shows the behaviors of the same

components of the scattered electric field for two different

values of the nonlinear parameter @2, that is, az = 0.01 and

0.1, for t = tz;Fig. 4(b) gives the same values for t= t4.As
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Fig. 4. Scattered electric field (g-component) along the propagation axis
(x = O,y = O), for a2 = 0.1 and O.01, eb = 2.0, A = 6. (a) t = tz;
(b) t = tl.

an example, Fig. 5 gives the cross-polarized (x-polarized and

z-polarized) components of the scattered electric field vector,

for various values of t~ and for a2 = 0.1. As cam be seen,

due to the simple geometrical configuration considered and to

the assumed isotropy of the medium, the amplitudes of these

components are very small. Finally, a pictorial representation

of the amplitude of the electric field forward-scattered on the

[ZZ] plane, Y = O, is presented. To cover a square area, 256

points were used, equally spaced (Ao /100). Only the quadrant

% > 0 was used, for symmetry reasons. Fig. 6(a) shows the

amplitude of the static component EO (r.), r~ = (Z,, o,z.);

the fundamental component is plotted in Fig. 6(b), the second

harmonic in Fig. 6(c), the third harmonic in Fig. 6(d), and the

fourth harmonic in Fig. 6(e). The two computed higher-order

components are not given. Each figure gives values for &b =

2.0 and for CZ2= 0.01 and 0,1. In the numerical computations

for the above simulations, Wolfe’s algorithm was started by

assuming that an initial solution for the harmonic components

of the scattered electric field vectors was given by sequences

(for the real and imaginary parts) of independent stochastic

variables characterized by uniform distributions between – 1

and +1 (V/m). This was an arbitrary choice, justified by

the incident-field strength. Of course, if the linear scattering

solution had been used as an initial solution, a fast convergence

might have been reached, Whenever the obtained solution was

not adequate enough after a fixed number I of iterations, we

made the algorithm restart, using another stochastic initial

I

I 1
) 0.2 0.4 0.6 0.8 1

z/s. [X=o,y=o]
(a)

0.001

f,
.i

.o.oo,~
o 0.2 0.4 0.6 0.8 1

z/A. [X=o,y=o]

(b)

Fig. 5. Copolarized scattered electric field components along the propagation

axis (z = O, y = O): (a) z-componen~ (b) %-component. We assumed
CY2= O.l, sb = 2.0, A = 6>% = (n – l)to/4.

solution. Fig. 7 gives the numbers of iterations and trials

needed to reach a solution such that, when substituted into

the final nonlinear system, gives rise to a square norm of the

residual less than 1%, for different values of the constant

A, i.e., the number of harmonics considered in the series

truncation (12). In this case, a nonlinear dielectric scatterer

of dimensions Ao/30 x Ao/15 x Ao/30 and characterized by

&b = 2.0 and a2 = 0.01 was considered. Moreover, we

assumed 1 = 25. For the scattering parallelepipeds in Fig. 6(a),

Fig. 8(a) gives the numbers of iterations and trials (needed to

obtain the same accuracy as reported above) versus the values

of the nonlinear index a2. In this case, we assumed A = 6,

s~ = 2.0 and 1 = 40. Finally, Fig. 8(b) gives the numbers

of iterations and trials for different values of the linear part

of the relative dielectric permittivity, &b, for A = 6, ct2 = 0.1

and I = 40.

IV. CONCLUSION

A numerical approach has been presented for the solution of

the direct scattering problem in the case where electromagnetic

waves are incident on a three-dimensional bounded dielectric

object ,whose dielectric permittivity depends on the intem~

electric field. The approach is based on an integral-equation

formalism that takes into account the nonlinear effect by

means of equivalent sources. The moment method is used

to discretize the resulting set of coupled integral equations.
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Fig. 6, Amplitudes of the harmonic components of theforward-scattered electric field (ctz = 0.1 and 0.01, sb = 2.0..4 = 6): (a)O-th-order component
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Wolfe’s iterative method is applied to solve the final algebraic

system of nonlinear equations.

Thenumerical results reported, although preliminary, seem

to indicate the possibility of predicting the distributions of the

harmonic components of the scattered electromagnetic fields

inside artd outside nonlinear scatterers of arbitrary shapes, for

which analytical techniques cannot be used. Of course, due

to the complexity of the electromagnetic problem considered,

which is handled by the moment method, notable computation

resources are required for the solution. The crucial point is

the solution of the algebraic system of nonlinear equations. To

this end, future work will be aimed at improving computation

efficiency by applying other more appropriate solution algo-

40

30

20

10

■ Number of trials

~ Number of iterations Ii

OLA
0.0 0.0001

1d
0.01

nonlinear index,

(a)

2.0 4.0 t

az

8.0 10.0

linear dielectric permittivity, Sb

(b)

Fig. 8. Numbers of trials (black towers) and iterations (rnled towers): (a),.,
versus the cw values, forQ = 2.0, A = 6, I = 40; (b) versus the ~b values,
for cw = O.l, A = 6,1 = 40.

rithms. In particular, a computer code based on the simulated

annealing method is currently under development. Moreover,

it will be very important to obtain experimental data in order

to verify the validity of the ovemll approach.
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