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Abstract—This paper deals with electromagnetic scattering by
nonlinear dielectrie objects. In particular, a numerical approach
is developed that is aimed at determining the distributions of the
electromagnetic field vector inside a three-dimensional nonlinear,
inhomogeneous, isotropic scatterer illuminated by a time-periodic
incident electric field vector. An integral-equation formulation for
the full-vector scattering problem is considered, and the nonlinear
effect is taken into account by introducing equivalent sources and
a Fourier-series representation. A system of integral equations
(for each harmonic vector components and for the static term) is
obtained that includes the internal electric field distribution as the
unknown. After discretization, the solution is reduced to solving
an algebraic system of nonlinear equations. Some preliminary
numerical results are reported concerning scatterers that exhibit
a specific (quadratic) dependence of the dielectric permittivity on
the total electric field. The harmonic components of the scattered
electric field outside the objects are also computed.

[. INTRODUCTION

HE PROPAGATION of electromagnetic waves through

solids is essentially a quantum-mechanical phenomenon,
as it involves interactions between energy quanta and mat-
ter. However, the description of such propagation in terms
of classical field theory is always useful in the context of
macroscopic interactions. Unfortunately, in the presence of
nonlinear media, it is in general very difficult to predict
nonlinear electromagnetic phenomena by general solutions of
the Maxwell equations. For this reason, in the past particular
solutions were proposed in order to explain such phenomena.
In this context, the study of electromagnetic wave propagation
[1] was aimed, for example, at defining the conditions under
which shock waves may form and propagate [2] and at
analyzing the behaviors of solitary waves and soliton waves,
which are solitary waves that develop and interact without
losing their identity [3]. Many types of solitons in various
physical media were described (e.g., in water as well as optical
waveguide) [4]-[7].

Nonlinear wave propagation and scattering were the subjects
of fundamental books in the fields of nonlinear optics [8]
[9]1 and nonlinear electromagnetics [10]. These books gave
an idea of the broad spectrum of possible applications (see
also [11]). To study the electromagnetic field in the presence
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of nonlinear media, approximate solutions were very often
adopted, using both numerical and analytical techniques. For
example, in [12] the perturbation technique was applied to
electromagnetic waves in waveguides and cavities filled with
nonlinear media. The authors assumed isotropic media where
the dielectric permittivity and the magnetic permeability were
dependent on the amplitudes of the electric and magnetic
fields, respectively. Others used a functional approach based
on the Volterra series [13] (which is the functional analogous to
the Taylor series), for example, to characterize whistler-mode
propagation in plasma [14] and to study nonlinearly loaded
antennas [15].

However, in most cases, propagation along infinite or semi-
infinite nonlinear media was considered, while more work
needs to be done on the interactions between electromagnetic
waves and nonlinear dielectrics of limited dimensions (i.e.,
electromagnetic scattering problems).

This topic was addressed by D. Censor from a systematic
point of view [16], [17]. He considered weak nonlinearities
described by Volterra series, and analyzed the scattering from
cylinders and spheres. In [18], [19], the authors presented a
solution to the electromagnetic scattering of obliquely incident
plane waves from homogeneous, nonlinear, anisotropic cylin-
ders. They used plane waves of unit amplitude as incident
fields and circular cylinders whose radii were fractions of the
wavelength related to the fundamental frequency.

This paper presents a numerical approach to the compu-
tation of the electromagnetic field vector scattered by three-
dimensional, bounded, inhomogeneous, isotropic, dielectric
objects with nonlinear characteristics (direct scattering prob-
lem). The dielectric permittivity depends on the electric field
inside an object and hence on the interaction mechanism
between the incident electromagnetic field and the nonlinear
material.

In particular, the purpose is to explore a numerical technique
to determine the electromagnetic field distributions inside and
outside a nonlinear body of arbitrary shape. To this end, we
develop an integral-equation formalism in which nonlinear
effects are taken into account and analytically represented in
terms of equivalent sources. The moment method [20] is used
to discretize the resulting set of coupled integral equations.
The problem solution is finally reduced to the solution of a
system of nonlinear algebraic equations.
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The mathematical formulation of the approach is presented
in Section II, and the results of some numerical simulations
are reported in Section III.

1I. MATHEMATICAL FORMULATION

Let us consider a bounded region D, which is occupied
by a nonlinear bounded dielectric object characterized by
a dielectric permittivity enr(r,¢)(r: position vector; ¢: time
variable), which depends on the electric field inside the object
through the relationship:

ENL(r, t) = 80[6(;(1‘) + »C{E(I',t)}] (1)

where E(r,t) is the total electric field vector, &,(r) is the
linear component of the relative dielectric permittivity and
L{E(r,)} denotes an operator that is assumed to fulfill the
constraint of not modifying the scalar nature of the dielectric
permittivity (i.e., the isotropic nature of the dielectric object)
and to be a periodic function expansible in Fourier series.
Further, the dielectric object has a magnetic permeability equal
to o (we neglect the possibility that the nonlinerarity of the di-
electric permittivity may influence the magnetic permeability).
The region outside D is a homogeneous, isotropic, nondissipa-
tive, boundless space region. The dielectric characteristics of
this region are represented by the dielectric permittivity ¢ and
the magnetic permeability 9. Moreover, Ei(r, t) and H*(r. ?)
stand for the incident electromagnetic field vectors produced
by an electromagnetic source in the absence of scattering
objects, i.e., in the presence of an entirely homogeneous region
characterized by the dielectric constants jo and eg.

At each point, the total electromagnetic field vectors, E(r, t)
and H(r,t), satisfy the Maxwell equations:

V X E(r. 1) = ~o s (H(r. 1)} @
¥V x H(r, ) = g—t{s(r,t)E(r,t)} 3

and Sommerfeld’s radiation conditions.

The presence of the object can be taken into account by
solving a suitable é\quivalent problem in which the scattering
object is replaced by an equivalent current density distribution
that extends to a domain that coincides with the region D,
but that is characterized by the same dielectric parameters as
the propagation medium. By definition, this equivalent current
density must be such as to produce, inside the region D,
an electromagnetic field equal to the one resulting from the
scattering by the medium inhomogeneity represented by the
nonlinear object. It follows that the electromagnetic field now
fulfils the following [21]:

0o
V x E(r,t) = —,uo—a—t{H(r,t)} @)
V x H(r,t) = 60%{]‘3(1‘, )} 4+ Jeq(r,t) (5
where
Jeq(r,t)

= 50%{[51,(1') —1E(r,t)} + eog{ﬁ{E(r, )} E(r,t)}
=Jr(r.1) + Inr(r.t) 6)

If the electromagnetic coupling between the electromagnetic
source and the scattering object is negligible, the total electric
and magnetic field vectors at each point can be expressed as:

E(r,t) = Ei(r,t) + E5(r,t) (7)
H(r,t) = Hi(r,t) + H5(r, t) 3
where E*(r,t) and H*(r,t) denote the electric and magnetic

field vectors scattered by the dielectric object, and satisfy the
equations:

0
~Ho 5 {H(r,1)} ©)

V x H%(r,t) = sog{lils(r,t)} + Jeg(r, 1)

V x E*(r,t) =
10)

where Jeq(r, ) is still given by (6). As is well known, from
(9) and (10) it is possible to derive the inhomogeneous wave
equation:

V x V xE*(r,t) + MoSo%{Es(r,t)} = —MO%{Jeq(r,t)}

(11)
Then, under the hypotheses made on the incident electric
field vector and on the nonlinear permittivity, we can expand
E(r,t),E%(r,t) and L{E(r,t)} in Fourier series with the
fundamental pulsation wy = 27 fy (fo being the fundamental
frequency of the incident field), as follows

+oo

> Ealr)explicat),

a4=—00

E(r,t) =

we = awo (a integer)  (12)

E(r,t) = +§ E;(r) exp(jwat)
o=

L{E(r,6)} = > Oulr)exp(jwat)

a=—0Q

(13)

(14)

where O,(r) denotes the a-th (scalar) term of the Fourier
expansion of L{E(r,#)} that can be made explicit once the
nonlinear operator has been specified. From (12) and (14), we
obtain the following relation:

+oo
L{E(r, 1)} E(r,t) = }: T, (r) exp(jw,t) (15)
where
Ta(r)
+o0 +o00
= Z Z Yar,asOar () Ea, (r) (a1, ap integer)
_ _ (16)

and vg, ., = 1if a1 + az = a, 75, 4, = 0 otherwise.

It should be noted that, in this relation, each vector Ty(r)
generally depends on all the harmonic components of the
electric field. From (6), it follows that the vector T,(r)
is proportional (by a factor 1/jw.eo) to the a-th Fourier
components of the nonlinear part of the equivalent current
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density. At this point, it is possible to substitute (9), (13) and
(15) into (11), thus obtaining:

+oco
Z exp(jwat){V x V x E(r) — wlpoeoEL (r) }

a=——0o0

+oo

= Z exp(fwqt)

x {w?poeoles(r) — UEq(r) + wlpoeoTa(r)}

(7

From (17), one can deduce that each harmonic component
satisfies he inhomogeneous wave equation:

V x V x Ei(r) — k2E3(r)

= k2[es(r) = 1Eq(r) + k; Ta(r) (18)

where k, = Wa/Ho€o (i.e., wavenumber for the pulsation w,).

From this relation, it appears evident that the presence of the
term T, (r) on the right-hand side indicates the dependence of
the generic harmonic term for the electromagnetic scattering
on the mutual coupling among the different vectors related to
the various frequencies. In particular, for L{E(r,¢)} = 0, that
is, in the case of linear conditions, all terms T,(r) are zero,
and (18) is equivalent to the well-known equation for direct
scattering in linear problems [20].

Therefore, a formal solution to (18), that is, the expression
for the a-th generic component (a # 0) of the scattered electric
field vector, can be written as:

El(r) = - /D E2lep(r') — 1JE4(x') - Go(x /1, ko )dr’
- / E2T. (') - Go(r /v, ko)dr’
D

where Go(r/vr’,

19)

k. ) denotes the dyadic Green function for free

space [22]:
exp(—jkq|r — 1'|)
A {I vv] 2
Gole/ k) = - [T+ 4 e eo
where T is the unit dyadic.
For the O-th harmonic term, for which k, = 0 (static

component), it is possible to consider the following expression
for the polarization vector:

Po(r) = goles(r) — 1]Eo(r) + e To(r)

from which the following relation for the O-th component of
the scattered electric field can be derived:

o 1 r—r
Eqj(r) = dreo j{ It —r|?
5
x {eolep(r’) ~ 1Eo(r’) — eoTo(r")} - fadr’

1 r—r’
e =23

2D

S
x {eolep(r’) — 1|Eo(r”) — g9 To(r') }dr’

where S is the surface including the domain D, and 1 is the
outward normal unit vector.

(22)

Equations (19) and (22) indicate an explicit functional
relationship among the harmonic components of the scattered
electric field vector. If we consider a finite number, A, of
harmonic components, (19) can be rewritten for each value
of a (@ # 0), thus leading to a system of A + 1 vector
integral-differential equations (for a = 0, consider (22)).
This system can be discretized by the moment method [20].
To this end, we expand all components £, ., and T, .,
p = 0,1,2 (we assume (zg,%1,%2) = (z,Yy,2)), into sums
of N basis functions with the coefficients £, and T3,
(n=1,...,N). and we consider IV suitable testing functions
Wm,m = 1,...,N. In this paper, we utilize, for simplicity,
rectangular pulse functions as basis functions and Dirac deltas
as testing functions. Under such assumptions, from (22) we
obtain

m
0,2,

1 L
:ZZZ{Eb(rn)—lEOc +T53%},
n=1g=0

dn d
, _ g _ _ %rg
Lpm — Lpn 7] 6:0(1 Lp,m — Zp,n 2q 5
X 4. - Aan
lrm ~ Ty — le lrm — Iy — qlg
p=0,...,2 m—-l,...,N (23)
where r, = (%o, T1.0, Z2,) denotes the position vector

related to the center of the n-th subvolume of D, AS,, rep-
resents the area of the face of the n-th subdomain orthogonal
1o the g-axis, d, is the edge of the same subdomain parallel
to the g direction and, finally, é,, stands for the Kronecker
symbol (6, = 1if p = g, 6,4 = 0 otherwise).

Application of the moment method to (19) yields:

2 N
So>{am . b E,
g=0n=1
2
PR Y, -,
g=0n=1
m=1,...,N =0,...,2 o= LA (24)

where ey, is the z, Cartesian component of the a-th har-
monic term of the known incident clectric field, E*(r), eval-

vated for r = rr,. In 24), G737, and G7'7 . are given
by:
g:gp@’q = G;T,:Lp,mq 6pq6mn [1 + ;J(LOEI;ZZ]

Gmgx = 7,(r,) [PV / G pg(tm /1, kg )dr!

Ve
(25)
Azn;?lp,zq = ATZp,xq %(Sp‘qémn
Apn = jwaeo |PV / Gopalm /1! i)t § | 2O
where 7(r,) = jweeoles(rn) — 1] and PV indicates the

principal value of the integral.
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Equations (25) and (26) can be explicitly derived as in [23]
for the linear case, taking into account the Van Bladel theory
for the principal value [24]. As a result, we obtain (27), shown
at the bottom of the page, and

Amn
@,Lp, Ty
( —JwWattoks (Jwag0) AV, exp(—jvymn)
47r2(7mn)2 ]
X{ [(P}'mn) -1- j'Ymn] 6pq
+EmmE (3= (mn)? + 3j9mnl | £
- Spqd — 211?’1%#0
X [(1 + jkapn) eXP(‘jkaPn) - 1]
_ Ta{rn) _
L [1 + 3 m=n
(28)

Tp,m —%pn

where Ymn = ako|rm — rpl, £ = IR pp = N
and AV, is the volume of the n-th subdomain.
By using (23) and (24), we obtain a system of (A+1)x N x3
- scalar algebraic equations that can be solved by means of
a suitable computation algorithm. This system allows one to
determine an approximate distribution of the scalar harmonic
components of the scattered electric field inside the scatterer.
Starting from such an approximate distribution, the values of
the harmonic components of the total electric field vector at
each point outside the scatterer can be easily obtained by
numerically calculating the integral on the right-hand side of
the equation:

Eo(r) = EL(r) + jwapio / [ra(0)Ba(r) + jwacoTa(r)]
D
x Go(r/x', k,)dr' a=1,...

A 29)

II. NUMERICAL EXAMPLES

In this section, we present the results of some numerical sim-
ulations performed mainly in order to explore the possibility
of determining the harmonic components of the clectric field
vectors inside nonlinear dielectric scatterers. As an example,
we considered a dielectric scatterer, namely, a parallelepiped,
whose volume was Ag/15 X Ag/30 X Ap/15, Ag being the free-
space wavelength related to the fundamental frequency. The
object was assumed to be homogeneous in its linear part of the
dielectric permittivity, lossless and nonmagnetic. Moreover,
we assumed the nonlinear operator L{E(r,t)} in relation (1)
to be given by:

L{E(r,t)} = as|E(r,1)|? (30)
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where g is a real coefficient, and |E(r,t)| stands for the
amplitude of the electric field vector. Under such assumptions,
the nonlinear dielectric permittivity turns out to be dependent
on the electromagnetic power. According to (1), the expression
for equivalent dielectric permittivity is:

enp(r,t) = eo{es + azlE(r,t)IQ} (31)
The object was illuminated by an incident electric field repre-
sented by two uniform plane waves of unit amplitude, at the
frequencies fo and 2fy. The two waves propagated in the 2
direction, normal to one of the smallest sides of the scatterer,
and the electric field vector was polarized in the ¢ direction
parallel to the smallest edge (to save space, the geometrical
configuration is shown in the upper left portion of Fig. 6(a)).
For this example, we used a frequency fo = 1 GHz, and the
dimensions of the object were chosen such as to be comparable
with the wavelengths of the fundamental and some harmonic
components in order that the scattering phenomena might
be significant. In addition, the object dimensions were fixed
taking into account the need for a numerical discretization
based on the criteria for an accurate usage of block models
[20] (which require the field not to vary too much inside each
cell), at least for the first harmonic vector components.

We considered the generation of six harmonic components
at the frequencies afp,a = 0,...,4,A = 6 (a = 0 gives the
static field), and we assumed N == 4. We obtained a system of
(A+1) x N x 3 coupled scalar nonlinear algebraic equations,
in which the unknown terms were the coefficients £7", . This
system was solved by using the iterative Wolfe method [25].

As an example, Fig. 1(a) illustrates the amplitude behavior
of the harmonic components of the copolarized scattered
electric field vector (y-polarized), ]Ef)y},a, =1,...,A A=
6, versus various significant values of the nonlinear index
ag, in the range 0.0 to 0.1, for the k-th subdomain (with
ri = (A0/60,0, ~X¢/60)) and for a linear part of the relative
dielectric permittivity e 2.0 (for this small value of
€p, the nonlinear part of the dielectric permittivity becomes
significant). The obtained values of the amplitude of the
scattered electric field, for as = 0.0, coincide with those
obtained by the authors (as a consistency check) by using the
moment method [20] for direct scattering by linear dielectrics.
Fig. 1(b) gives the amplitudes of the harmonic components
of the copolarized scattered electric field vector (y-polarized),
|EE l,a = 1,...,4,A = 6, for the h-th subdomain (with
ry = {X/60,0,~—Xo/60)), versus various values of the linear
part of the relative dielectric permittivity of the scatterer. In
this case, we fixed oz = 0.1. As expected, the amplitudes of

Gmn

a,2p,rq

—JwaokaTo (Tn)AVy exp(—JYmn)

47 (Ymn)?

mn e&mn
+&on &,

-1+

[3 - (Wmn)Q + 3j’7mn] }
611!1{_'2]‘&)—(17;;:1]{((%2[(1 +jkapn)eXp(—jkapn) - 1]

Ta (rn)

[(’Ymn)Q -1- j’Ymn] 6pq

@7

33waso:| }
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Fig. 1. Amplitudes of the harmonic components of the scattered elec-
tric field (coefficients |ngy|): (a) versus thenonlinear parameter «o, for
ep = 2.0,m = k,ri = (Ao/60,0,~Xg/60), A = 6; (b) versus the linear
part of the dielectric permittivity £, for ag = 0.1,m = h, A = 6.

the higher harmonic components decreased as the linear part
of the dielectric permittivity increased, for the nonlinear effect
was hidden by the linear part of the dielectric permittivity.
Both Fig. 1(a) and (b) shows the generation of a rather
significant static component, which the proposed approach is
able to take into account. Once the coefficients EZ', ,a =
0,....,4,p = 0,...,2,m = 1,..., N, were obtained, the
following quantity was computed:

A 2

Z Z E., exp(jwat)X,

a=—A p=0

A2
+ Z ZeTM exp(jwat)Xp

a=—A p=0

6:’1@) = g9< &p(rm) + a2

2
(32)

which can be viewed as an “equivalent” relative dielectric
permittivity, of course, time-dependent. €7 (¢) gives the ap-
proximate values of enr.(r,¢) in relation (1), for r = r,.

Fig. 2(a) shows (for the specific incident electric field used)
the behavior of e’gq over a time interval corresponding to
to (i.e., the period of the fundamental component fy), for a
subdomain with ry = (Ag/60, 0, —Xo/60), and for different
values of the index a5. Fig: 2(b) gives the plot of e,’;q (for the
same time interval) versus various values of the linear part of
the dielectric permittivity, for o = 0.1. One can observe that,
as e, increases, the nonlinear effect tends to disappear, and
sgq tends to assume constant values.

On the basis of the approximate internal electric field
distribution, the external field was computed through relation

2.7

£y (1)

sf;q_(t)

0 02 04 06 08 1
t/t,
()

Fig. 2. Behavior of the equivalent dielectric permittivity eZf 63
as a function of time (relation (30)): (a) for various values of
as(ey = 2.0,m = k,rr = (Np/60,0,—X0/60),A = 6); (b) for various
values of € (a2 = 0.1,m = h,ry, = (Xo/60,0,—X0/20),A = 6). &y is
the period of the fundamental component at the frequency fo.

0.1

0 0.2 04 0.6 0.8 1
[x=0,y=0]

Fig. 3. Scattered electric field (y-component) along the propagation axis
(x =0,y =0), forag = 0.1,ep = 2.0,A = 6,t, = (n — 1)to/4.

(29). The following figures give the field values at points along
the propagation axis. One-thousand points were considered.
Fig. 3 shows the behaviors of the time-dependent copolarized
components of the scattered electric field vector, for x =
O,y = 0and 0 < 2z < A, and for ¢ = ¢,, where
t, = (n — 1)to/4. In this case, we assumed & = 2.0
and as = 0.1. Fig. 4(a) shows the behaviours of the same
components of the scattered electric field for two different
values of the nonlinear parameter as, that is, e = 0.01 and
0.1, for ¢ = t5; Fig. 4(b) gives the same values for ¢ = {4. As
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Fig. 4. Scattered electric field (y-component) along the propagation axis
(x = 0,y = 0), for o = 0.1 and 0.01,55 = 2.0,4 = 6. (a) t = {23
(b) t = t4.

an example, Fig. 5 gives the cross-polarized (z-polarized and
z-polarized) components of the scattered electric field vector,
for various values of ¢, and for o = 0.1. As can be seen,
due to the simple geometrical configuration considered and to
the assumed isotropy of the medium, the amplitudes of these
components are very small. Finally, a pictorial representation
of the amplitude of the electric field forward-scattered on the
[z2] plane, y = 0, is presented. To cover a square area, 256
points were used, equally spaced (Ag/100). Only the quadrant
x > 0 was used, for symmetry reasons. Fig. 6(a) shows the
amplitude of the static component Fy(r,),rs = (%0, 2);
the fundamental component is plotted in Fig. 6(b), the second
harmonic in Fig. 6(c), the third harmonic in Fig. 6(d), and the
fourth harmonic in Fig. 6(¢). The two computed higher-order
components are not given. Each figure gives values for g, =
2.0 and for cz = 0.01-and 0.1. In the numerical computations
for the above simulations, Wolfe’s algorithm was started by
assuming that an initial solution for the harmonic components
of the scattered electric field vectors was given by sequences
(for the real and imaginary parts) of independent stochastic
variables characterized by uniform distributions between —1
and +1 (V/m). This was an arbitrary choice, justified by
the incident-field strength. Of course, if the linear scattering
solution had been used as an initial solution, a fast convergence
might have been reached. Whenever the obtained solution was
not adequate enough after a fixed number I of iterations, we
made the algorithm restart, using another stochastic initial

0.001

F
X 00
w X
0.061 Mo ——
0 02 04 06 OB 1
2/, [x=0,y=0]
(@)
0.001

Ei(z, tn)

-0.001 ,—f_,—.—.———,——v—————J

0 0.2 04 0.6 0.8 1
z/hy [x=0,y=0]
®
Fig.5. Copolarized scattered electric field components along the propagation

axis (z = 0,y = 0): (a) z-component; (b) z-component. We assumed
ag = 01,65 =2.0,4 = 6,1, = (n — 1)to/4.

solution. Fig. 7 gives the numbers of iterations and trials
needed to reach a solution such that, when substituted into
the final nonlinear system, gives rise to a square norm of the
residual less than 1%, for different values of the constant
A, ie., the number of harmonics considered in the series
truncation (12). In this case, a nonlinear dielectric scatterer
of dimensions \g/30 X Xo/15 X Ag/30 and characterized by
2.0 and o = 0.01 was considered. Moreover, we
assumed I = 25. For the scattering parallelepiped in Fig. 6(a),
Fig. 8(a) gives the numbers of iterations and trials (needed to
obtain the same accuracy as reported above) versus the values
of the nonlinear index «o. In this case, we assumed A = 6,
gy = 2.0 and I = 40. Finally, Fig. 8(b) gives the numbers
of iterations and trials for different values of the linear part
of the relative dielectric permittivity, €, for A = 6, ap-= 0.1
and I = 40.

&y —

IV. CONCLUSION

A numerical approach has been presented for the solution of
the direct scattering problem in the case where electromagnetic
waves are incident on a three-dimensional bounded dielectric
object whose dielectric permittivity depends on the internal
electric field. The approach is based on an integral-equation
formalism that takes into account the nonlinear effect by
means of equivalent sources. The moment method is used
to discretize the resulting set of coupled integral equations.
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Fig. 7. Numbers of trials (black towers) and iterations (ruled towers) for
different values of 4 (highest-order harmonic component) and for oz = 0.01,
e, = 2.0, = 25,

Wolfe’s iterative method is applied to solve the final algebraic
system of nonlinear equations.

The numerical results reported, although preliminary, seem
to indicate the possibility of predicting the distributions of the
harmonic components of the scattered electromagnetic fields
inside and outside nonlinear scatterers of arbitrary shapes, for
which analytical techniques cannot be used. Of course, due
to the complexity of the eleciromagnetic problem considered,
which is handled by the moment method, notable computation
resources are required for the solution. The crucial point is
the solution of the algebraic system of nonlinear equations. To
this end, future work will be aimed at improving computation
efficiency by applying other more appropriate solution algo-
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Number of iterations

B Number of trials

Z

linear dielectric permittivity, ¢
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Fig. 8. Numbers of trials (black towers) and iterations (ruled towers): (a)
versus the ag values, fors, = 2.0, 4 = 6, I = 40; (b) versus the £; values,
for ag = 0.1,4 = 6,1 = 40.

rithms. In particular, a computer code based on the simulated
annealing method is currently under development. Moreover,
it will be very important to obtain experimental data in order
to verify the validity of the overall approach.

REFERENCES

[11 L G. Katayev, Electromagnetic Shock Wave. London: Iliffe, 1966.

[2] A. Jeffrey and V. Korobeinikov, “Formation and decay of electromag-
netic shock waves,” ZAMP, vol. 20. pp. 440-447.

[3] A. Geffrey, “A brief history of solitons.” in Proc. 5th Int. Meeting ‘Waves
and Stability in Continuous Media,” vol. 4, pp. 204-218, 1989.

[4] I M. Besieris, “Solitons in randoraly inhomogeneous media,” in Non-
linear Electromagnetics, P. L. E. Uslenghi, Ed. New York: Academic,
1980, pp. 87-116.

[5] S. F. Lin and W. S. Wang, “Excitation of three-dimensional solitary
waves from a nonlinear slab waveguide,” Microwave and Optical
Technol. Lett., vol. 5, no. 10, pp. 517-520. Sept. 1992.

[6] S.F.Liu, P. K. Weij, and W. S. Wang, “A new approach to the analysis
of the soliton: nonuniform finite difference beam propagation method,”
Microwave and Optical Technol. Lett., vol. 5, no. 6, pp. 284-288, June
1992.

[7]1 N. D. Bloembergen, Ed., Nonlinear Optics.

{81 P. G. Harper and B. S Wherret, Eds., Nonlinear Optics.
Academic, 1977.

[9] P. L. E. Uslenghi, Ed., Nonlinear Electromagnetics.

demic, 1980.

A. Korpel and P. P. Banerjee, A heuristic guide to nonlinear dispersive

wave equations and soliton-type solutions,” Proc. IEEE, vol. 72, pp.

1109-1130, 1984.

Special issue of J Optical Society of America B on “Nonlinear Guided-

‘Wave Phenomena,” vol. 5, no. 2, Feb. 1988,

J. B. Keller and M. H. Millman, “‘Perturbation theory of nonlinear

electromagnetic wave propagation,” Phys. Rev., vol. 181, no. 5, pp.

1730-1747, May 1969.

New York: Plenum, 1960,
New York:

New York: Aca-

[10]

(1]
[12]



436 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 2, FEBRUARY 1995

[13] E. Bedrosian and S. O. Rice, “The output properties of Volterra systems

(nonlinear systems with memory) driven by harmonic and Gaussian

inputs,” Proc. IEEE, vol. 59, pp. 1688-1707, 1971.

D. C. Dalpe, G. Kent, and D. D. Weiner, “Extension of Volterra analysis

to weakly nonlinear electromagnetic field problems with applications

to whistler propagation,” IEEE Trans. Microwave Theory Tech., vol.

MTT-30, pp. 1059-1067, July 1982.

T. K. Sarkar and D. Weiner, “Scattering analysis of nonlinearly oaded

antennas,” IEEE Trans. Antennas Propagat., vol. AP-24, no. 2, pp.

125-131, 1976.

D. Censor, “Scattering by weakly nonlinear objects,” SIAM J. Appl.

Math., vol. 43, pp. 1400-1417, 1983.

, “Harmonic and transient scattering from weakly nonlinear
objects,” Radio Sci., vol. 22, no. 2, pp. 227-233, Mar.—Apr. 1987.

[18] M. A. Hasan and P. L. E. Uslenghi, “Electromagnetic scattering from
nonlinear anisotropic cylinders—Part I: Fundamental frequency,” IEEE
Trans. Antennas Propagat., vol. 38, no. 4, pp. 523-533, Apr. 1990.

, “Higher-order harmonics in electromagnetic scattering from a

nonlinear anisotropic cylinder,” Electromagnetics, vol. 11, pp. 377-392,

1991.

R. F. Harrington, Field Computation by Moment Method. New York:

McMillan, 1968.

J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross-

section shape,” IEEE Trans. Antennas Propagat., vol. 13, pp. 334341,

1965.

C. T. Tai, Dyadic Green’s Functions in Electromagnetic Theory. Scran-

ton: Int. Textbooks, 1971.

[23] D.E. Livesay and K. M. Chen, “Electromagnetic fields inside arbitrarily
shaped biological bodies,” IEEE Trans. Microwave Theory Tech., MTT-
22, pp. 1273-1280, 1974.

[24] J. Van Bladel, “Some remarks on Green’s dyadic for infinite space,”
IRE Trans. Antennas Propagat., vol. AP-9, pp. 563-566, Nov. 1961.

[25] P. Wolfe, “The secant method for simultancous nonlinear equations,”
Commun. ACM, vol. 2, no. 12, pp. 12-13, 1959.

[14]

[15]

{16]

[17]

[19]

[20]

[21]

[22]

Salvatore Caorsi received the “laurea” degree
in electronic engineering from the University of
Genoa, Genoa, Italy, in 1973.

After graduation he remained at the University as
a researcher, and since 1976 he has been professor
of antennas and propagation. In 1985 he also
assumed the ftitle of professor of fundamentals
of remote sensing. He is with the Department of
Biophysical and Electronic Engineering, where he
is responsible for the Applied Electromagnetics
Group and for the Inter-University Research
Center for Interactions Between Electromagnetic Fields and Biological
Systems (ICEMB). His primary activities are focused on applications of
electromagnetic fields to telecommunications, artificial vision and remote
sensing, biology, and medicine. In particular, he is working on research
projects concerning microwave hyperthermia and radiometry in oncological
therapy; numerical methods for solving electromagnetic problems; and inverse
scattering and microwave imaging.

He is a member of the Associazione Elettrotecnica ed Elettronica Italiana
(AEI), of the European Bioelectromagnetism Association (EBEA), and of the
European Society for Hyperthermic Oncology (ESHO).

Andrea Massa is a Ph.D. student of electron-
ics and computer science in the Department of
Biophysical and Electronic Engineering, University
of Genoa, Genoa, Italy. He received the "laurea”
degree in electronic engineering from the University
of Genoa in 1992. Since that year, he has cooperated
in the activities of the Applied Electromagnetism
Group.

His main interests are in the field of electromag-
netic direct and inverse scattering, biomedical ap-
plications of ¢lectromagnetic fields, nonlinear wave
propagation, and numerical methods in electromagnetism.

Matteo Pastorino (M’90) received the “laurea”
degree in electronic engineering from the University
of Genoa, Genoa, Italy, in 1987 and the Ph.D.
degree in Electronics and Computer Science from
the same university in 1992.

Since 1987, the year it was established, he has
cooperated on the activities of the Inter-University
Research Center for Interactions Between Electro-
magnetic Fields and Biological Systems and the
Applied Electromagnetics Group. At present he is
an assistant professor of Electromagnetic Fields in
the Department of Biophysical and Electronic Engineering. His main research
interests are in electromagnetic direct and inverse scattering, microwave
imaging, wave propagation in presence of nonlinear media, and in numerical
methods in electromagnetism. He is also working on research projects con-
cerning biomedical applications of e.m. fields and microwave hyperthermia.

He is a member of the Associazione Elettrotecnica ed Elettronica Italiana
(AEI), and of the European Bioelectromagnetism Association (EBEA).



